

Abstract

Procedural and conceptual knowledge for solving a basic quantitative problem in chemistry by expert and novice secondary school students is reported. Experts use a known qualitative procedure with a working forwards strategy to obtain a numerical solution. Novices attempt a means-ends analysis strategy which is often unsuccessful, so switch to a simple formula-driven working forwards strategy to obtain a numerical solution, the qualitative procedure being either omitted or only partially formed. A gradual shift in strategies and representations used as expertise increases was observed. Differences with findings for problem solving in physics were also found. Experts' conceptual knowledge is accurate and linked to underlying procedural knowledge, whereas novices have misconceptions and a poor understanding of formulae. Conceptual understanding, use of a qualitative procedure, and the type of strategy used, are major differences between experts and novices. Instructional techniques are suggested in these areas to enhance problem solving and teaching.

People also read

The role of submicroscopic and symbolic representations in chemical explanations	
David Treagust e	t al.
International Journ Volume 25, 2003 - Iss	al of Science Education ue 11
Published online: 3	un 2010
Article	
Misconcept	ions of students and teachers in chemical equilibrium >
Anil C. Banerjee	
International Journ	al of Science Education
Volume 13, 1991 - Iss Published online: 25	
Article	
	nt and use of diagnostic tests to evaluate students'
misconcept	ions in science >
David F. Treagus	
	al of Science Education
Volume 10, 1988 - Iss Published online: 24	
Article	
Conceptual	change: A powerful framework for improving science
teaching an	d learning >

VUIUTTIE 23, 2003 - 1550E 0

Published online: 26 Nov 2010

Article

Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching

Paul A. Kirschner et al.

Educational Psychologist Volume 41, 2006 - Issue 2

Published online: 8 Jun 2010

Article

Students' Alternative Conceptions in Chemistry: A Review of Research and Implications for Teaching and Learning

Patrick J. Garnett et al.

Studies in Science Education Volume 25, 1995 - Issue 1

Published online: 26 Mar 2008

Information for

Authors **Editors**

Librarians Societies

Help and info

Help FAQs

Press releases Contact us

Commercial services

Open access

Overview

Open journals

Open Select

Cogent OA

Connect with Taylor & Francis

f y in

Copyright © 2017 Informa UK Limited Privacy policy & cookies Terms & conditions Accessibility

Registered in England & Wales No. 3099067 5 Howick Place | London | SW1P 1WG